|  Help  |  About  |  Contact Us

Publication : Differential association of postsynaptic signaling protein complexes in striatum and hippocampus.

First Author  Baucum AJ 2nd Year  2013
Journal  J Neurochem Volume  124
Issue  4 Pages  490-501
PubMed ID  23173822 Mgi Jnum  J:193535
Mgi Id  MGI:5468740 Doi  10.1111/jnc.12101
Citation  Baucum AJ 2nd, et al. (2013) Differential association of postsynaptic signaling protein complexes in striatum and hippocampus. J Neurochem 124(4):490-501
abstractText  Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro-dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin-dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F-actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared with similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared with hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin-GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII-GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared with hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression