|  Help  |  About  |  Contact Us

Publication : Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase.

First Author  Benkhoff S Year  2012
Journal  Arterioscler Thromb Vasc Biol Volume  32
Issue  7 Pages  1605-12
PubMed ID  22580898 Mgi Jnum  J:201495
Mgi Id  MGI:5514215 Doi  10.1161/ATVBAHA.112.251140
Citation  Benkhoff S, et al. (2012) Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol 32(7):1605-12
abstractText  OBJECTIVE: Obesity is associated with hyperleptinemia but it is not clear whether leptin protects vascular function or promotes dysfunction. We therefore studied the consequences of hyperleptinemia in lean mice. METHODS AND RESULTS: Wild-type and endothelial NO synthase (eNOS)(-/-) mice were infused with leptin (0.4 mg/kg per day, 7 days), and endothelium-dependent relaxation was studied in aortic segments. Leptin had no effect on acetylcholine-induced endothelium-dependent relaxation in normal wild-type mice but restored endothelium-dependent relaxation in wild-type mice treated with angiotensin II (0.7 mg/kg per day, 7 days) to induce endothelial dysfunction. Leptin also sensitized aortae from eNOS(-/-) mice to acetylcholine, an effect blocked by neuronal NOS (nNOS) inhibition and not observed in eNOS-nNOS double(-/-) mice. Consistent with these findings, leptin induced nNOS expression in murine and human vessels and human endothelial but not smooth muscle cells. Aortic nNOS expression was also induced in mice by a high-fat diet. Mechanistically, leptin increased endothelial Janus kinase 2 and signal transducer and activator of transcription 3 phosphorylation, and inhibition of Janus kinase 2 prevented nNOS induction in cultured cells and leptin-induced relaxations in eNOS(-/-) mice. CONCLUSIONS: Leptin induces endothelial nNOS expression, which compensates, in part, for a lack of NO production by eNOS to maintain endothelium-dependent relaxation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression