|  Help  |  About  |  Contact Us

Publication : Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells.

First Author  Keller D Year  2014
Journal  J Cell Biol Volume  204
Issue  5 Pages  697-712
PubMed ID  24590172 Mgi Jnum  J:212978
Mgi Id  MGI:5582653 Doi  10.1083/jcb.201307049
Citation  Keller D, et al. (2014) Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J Cell Biol 204(5):697-712
abstractText  SAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting. High-resolution imaging reveals that GFP-tagged HsSAS-6 variants localize in a torus around the base of the parental centriole before S phase, perhaps indicative of an initial loading platform. Moreover, fluorescence recovery after photobleaching analysis demonstrates that HsSAS-6 is immobilized progressively at centrosomes during cell cycle progression. Using fluorescence correlation spectroscopy and three-dimensional stochastic optical reconstruction microscopy, we uncover that HsSAS-6 is present in the cytoplasm primarily as a homodimer and that its oligomerization into a ninefold symmetrical ring occurs at centrioles. Together, our findings lead us to propose a mechanism whereby HsSAS-6 homodimers are targeted to centrosomes where the local environment and high concentration of HsSAS-6 promote oligomerization, thus initiating procentriole formation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression