First Author | Zhao Z | Year | 2015 |
Journal | Am J Physiol Heart Circ Physiol | Volume | 308 |
Issue | 3 | Pages | H240-9 |
PubMed ID | 25485900 | Mgi Jnum | J:220758 |
Mgi Id | MGI:5636103 | Doi | 10.1152/ajpheart.00630.2014 |
Citation | Zhao Z, et al. (2015) Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. Am J Physiol Heart Circ Physiol 308(3):H240-9 |
abstractText | Inhibition of beta-adrenergic receptor (beta-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing beta-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6. Therefore, it is surprising that prior studies on overexpression of AC5 and AC6 in transgenic (Tg) mice have not examined mediation of arrhythmogenesis. Our goal was to examine the proarrhythmic substrate in AC5Tg hearts. Intracellular calcium ion (Ca(2+) i) was imaged in fluo-4 AM-loaded ventricular myocytes. The sarcoplasmic reticulum (SR) Ca(2+) content, fractional Ca(2+) release, and twitch Ca(2+) transient were significantly higher in the AC5Tg vs. wild-type (WT) myocytes, indicating Ca(2+) overload in AC5Tg myocytes. Action potential (AP) duration was significantly longer in AC5Tg than in WT myocytes. Additionally, AC5Tg myocytes developed spontaneous Ca(2+) waves in a larger fraction compared with WT myocytes, particularly when cells were exposed to isoproterenol. The Ca(2+) waves further induced afterdepolarizations and triggered APs. AC5Tg hearts had increased level of SERCA2a, oxidized Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and phosphorylation of ryanodine receptors (RyR) at the CaMKII site, especially after isoproterenol treatment. This was consistent with higher reactive oxygen species production in AC5Tg myocytes after isoproterenol treatment. Isoproterenol induced more severe arrhythmias in AC5Tg than in WT mice. We conclude that AC5 overexpression promotes arrhythmogenesis, by inducing SR Ca(2+) overload and hyperactivation of RyR (phosphorylation by CaMKII), which in turn induces spontaneous Ca(2+) waves and afterdepolarizations. |