|  Help  |  About  |  Contact Us

Publication : Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate.

First Author  Liu P Year  2015
Journal  Nat Commun Volume  6
Pages  6830 PubMed ID  25904100
Mgi Jnum  J:222802 Mgi Id  MGI:5645617
Doi  10.1038/ncomms7830 Citation  Liu P, et al. (2015) Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nat Commun 6:6830
abstractText  Cell fate determination requires the cooperation between extrinsic signals and intrinsic molecules including transcription factors as well as epigenetic regulators. Nevertheless, how neural fate commitment is regulated by epigenetic modifications remains largely unclear. Here we show that transient histone deacetylation at epiblast stage promotes neural differentiation of mouse embryonic stem cells (mESCs). Histone deacetylase 1 (HDAC1) deficiency in mESCs partially phenocopies the inhibition of histone deacetylation in vitro, and displays reduced incorporation into neural tissues in chimeric mouse embryos in vivo. Mechanistic studies show that Nodal, which is repressed by histone deacetylation, is a direct target of HDAC1. Furthermore, the inhibition of histone deacetylation in the anterior explant of mouse embryos at E7.0 leads to Nodal activation and neural development repression. Thus, our study reveals an intrinsic mechanism that epigenetic histone deacetylation ensures neural fate commitment by restricting Nodal signalling in murine anterior epiblast ex vivo and mESC in vitro.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression