First Author | Han JK | Year | 2014 |
Journal | Circulation | Volume | 130 |
Issue | 14 | Pages | 1168-78 |
PubMed ID | 25186941 | Mgi Jnum | J:227454 |
Mgi Id | MGI:5700482 | Doi | 10.1161/CIRCULATIONAHA.113.007727 |
Citation | Han JK, et al. (2014) Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 130(14):1168-78 |
abstractText | BACKGROUND: Cell-based therapies to augment endothelial cells (ECs) hold great therapeutic promise. Here, we report a novel approach to generate functional ECs directly from adult fibroblasts. METHODS AND RESULTS: Eleven candidate genes that are key regulators of endothelial development were selected. Green fluorescent protein (GFP)-negative skin fibroblasts were prepared from Tie2-GFP mice and infected with lentiviruses allowing simultaneous overexpression of all 11 factors. Tie2-GFP(+) cells (0.9%), representing Tie2 gene activation, were detected by flow cytometry. Serial stepwise screening revealed 5 key factors (Foxo1, Er71, Klf2, Tal1, and Lmo2) that were required for efficient reprogramming of skin fibroblasts into Tie2-GFP(+) cells (4%). This reprogramming strategy did not involve pluripotency induction because neither Oct4 nor Nanog was expressed after 5 key factor transduction. Tie2-GFP(+) cells were isolated using fluorescence-activated cell sorting and designated as induced ECs (iECs). iECs exhibited endothelium-like cobblestone morphology and expressed EC molecular markers. iECs possessed endothelial functions such as Bandeiraea simplicifolia-1 lectin binding, acetylated low-density lipoprotein uptake, capillary formation on Matrigel, and nitric oxide production. The epigenetic profile of iECs was similar to that of authentic ECs because the promoters of VE-cadherin and Tie2 genes were demethylated. mRNA profiling showed clustering of iECs with authentic ECs and highly enriched endothelial genes in iECs. In a murine model of hind-limb ischemia, iEC implantation increased capillary density and enhanced limb perfusion, demonstrating the in vivo viability and functionality of iECs. CONCLUSIONS: We demonstrated the first direct conversion of adult fibroblasts to functional ECs. These results suggest a novel therapeutic modality for cell therapy in ischemic vascular disease. |