|  Help  |  About  |  Contact Us

Publication : Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis.

First Author  Cencetti F Year  2014
Journal  FEBS J Volume  281
Issue  19 Pages  4467-78
PubMed ID  25131845 Mgi Jnum  J:229220
Mgi Id  MGI:5751054 Doi  10.1111/febs.12955
Citation  Cencetti F, et al. (2014) Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. FEBS J 281(19):4467-78
abstractText  Regulation of the motility of skeletal muscle precursor cells, such as satellite cells, is critically important for their proper recruitment at the site of tissue damage, and ultimately for its correct repair. Here we show that lysophosphatidic acid (LPA), which is well-recognized as a powerful bioactive agent, strongly stimulates cell migration of activated murine satellite cells. The biological effect exerted by LPA was found to be induced via activation of LPA1 and LPA3 , being abolished by cell treatment with the antagonist Ki16425, and severely impaired by siRNA-mediated down-regulation of the two receptor isoforms. In contrast, silencing of LPA2 potentiated the stimulation of cell motility by LPA, suggesting that it is negatively coupled to cell migration. Pharmacological inhibition of both sphingosine kinase (SK) isoforms using VPC96047, or the selective blocking of SK1 using VPC96091, abolished cell responsiveness to LPA; in agreement, gene silencing of SK1 or SK2 significantly reduced the biological effect of LPA. Moreover, the LPA-dependent stimulation of cell chemotaxis was found to be impaired by down-regulation of the sphingosine 1-phosphate (S1P) receptors S1P1 or S1P4 by specific siRNAs. In summary, the results obtained support the notion that the sphingosine kinase/sphingosine 1-phosphate (SK/S1P) axis is critically involved in the mechanism by which LPA elicits its pro-migratory action. This study provides compelling new information on the regulatory mechanisms of satellite cell motility, and reinforces the view that the SK/S1P signaling pathway plays a crucial role in the control of skeletal muscle precursor cell biology.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression