First Author | Sato T | Year | 2017 |
Journal | Proc Natl Acad Sci U S A | Volume | 114 |
Issue | 16 | Pages | E3344-E3353 |
PubMed ID | 28373577 | Mgi Jnum | J:242137 |
Mgi Id | MGI:5904537 | Doi | 10.1073/pnas.1616733114 |
Citation | Sato T, et al. (2017) Parathyroid hormone controls paracellular Ca2+ transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci U S A 114(16):E3344-E3353 |
abstractText | Renal Ca2+ reabsorption is essential for maintaining systemic Ca2+ homeostasis and is tightly regulated through the parathyroid hormone (PTH)/PTHrP receptor (PTH1R) signaling pathway. We investigated the role of PTH1R in the kidney by generating a mouse model with targeted deletion of PTH1R in the thick ascending limb of Henle (TAL) and in distal convoluted tubules (DCTs): Ksp-cre;Pth1rfl/fl Mutant mice exhibited hypercalciuria and had lower serum calcium and markedly increased serum PTH levels. Unexpectedly, proteins involved in transcellular Ca2+ reabsorption in DCTs were not decreased. However, claudin14 (Cldn14), an inhibitory factor of the paracellular Ca2+ transport in the TAL, was significantly increased. Analyses by flow cytometry as well as the use of Cldn14-lacZ knock-in reporter mice confirmed increased Cldn14 expression and promoter activity in the TAL of Ksp-cre;Pth1rfl/fl mice. Moreover, PTH treatment of HEK293 cells stably transfected with CLDN14-GFP, together with PTH1R, induced cytosolic translocation of CLDN14 from the tight junction. Furthermore, mice with high serum PTH levels, regardless of high or low serum calcium, demonstrated that PTH/PTH1R signaling exerts a suppressive effect on Cldn14. We therefore conclude that PTH1R signaling directly and indirectly regulates the paracellular Ca2+ transport pathway by modulating Cldn14 expression in the TAL. Finally, systemic deletion of Cldn14 completely rescued the hypercalciuric and lower serum calcium phenotype in Ksp-cre;Pth1rfl/fl mice, emphasizing the importance of PTH in inhibiting Cldn14. Consequently, suppressing CLDN14 could provide a potential treatment to correct urinary Ca2+ loss, particularly in patients with hypoparathyroidism. |