|  Help  |  About  |  Contact Us

Publication : Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord.

First Author  Sunagawa M Year  2017
Journal  Neuroscience Volume  343
Pages  459-471 PubMed ID  28039040
Mgi Jnum  J:243154 Mgi Id  MGI:5907784
Doi  10.1016/j.neuroscience.2016.12.032 Citation  Sunagawa M, et al. (2017) Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord. Neuroscience 343:459-471
abstractText  In the spinal cord, glycine and gamma-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression