|  Help  |  About  |  Contact Us

Publication : Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation.

First Author  Xie L Year  2016
Journal  Diabetes Volume  65
Issue  10 Pages  3171-84
PubMed ID  27335232 Mgi Jnum  J:252012
Mgi Id  MGI:5923653 Doi  10.2337/db16-0020
Citation  Xie L, et al. (2016) Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation. Diabetes 65(10):3171-84
abstractText  Hydrogen sulfide (H2S) has been shown to have powerful antioxidative and anti-inflammatory properties that can regulate multiple cardiovascular functions. However, its precise role in diabetes-accelerated atherosclerosis remains unclear. We report here that H2S reduced aortic atherosclerotic plaque formation with reduction in superoxide (O2 (-)) generation and the adhesion molecules in streptozotocin (STZ)-induced LDLr(-/-) mice but not in LDLr(-/-)Nrf2(-/-) mice. In vitro, H2S inhibited foam cell formation, decreased O2 (-) generation, and increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and consequently heme oxygenase 1 (HO-1) expression upregulation in high glucose (HG) plus oxidized LDL (ox-LDL)-treated primary peritoneal macrophages from wild-type but not Nrf2(-/-) mice. H2S also decreased O2 (-) and adhesion molecule levels and increased Nrf2 nuclear translocation and HO-1 expression, which were suppressed by Nrf2 knockdown in HG/ox-LDL-treated endothelial cells. H2S increased S-sulfhydration of Keap1, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and inhibited O2 (-) generation, which were abrogated after Keap1 mutated at Cys151, but not Cys273, in endothelial cells. Collectively, H2S attenuates diabetes-accelerated atherosclerosis, which may be related to inhibition of oxidative stress via Keap1 sulfhydrylation at Cys151 to activate Nrf2 signaling. This may provide a novel therapeutic target to prevent atherosclerosis in the context of diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression