|  Help  |  About  |  Contact Us

Publication : Exocytosis-Mediated Urinary Full-Length Megalin Excretion Is Linked With the Pathogenesis of Diabetic Nephropathy.

First Author  De S Year  2017
Journal  Diabetes Volume  66
Issue  5 Pages  1391-1404
PubMed ID  28289043 Mgi Jnum  J:247016
Mgi Id  MGI:5924320 Doi  10.2337/db16-1031
Citation  De S, et al. (2017) Exocytosis-Mediated Urinary Full-Length Megalin Excretion Is Linked With the Pathogenesis of Diabetic Nephropathy. Diabetes 66(5):1391-1404
abstractText  Efficient biomarkers for diabetic nephropathy (DN) have not been established. Using ELISA, we found previously that urinary levels of full-length megalin (C-megalin), a multiligand endocytic receptor in proximal tubules, was positively correlated with DN progression in patients with type 2 diabetes mellitus (T2DM). Here, we found that urinary extracellular vesicle (UEV) excretion and C-megalin content in UEVs or in their exosomal fraction increased along with the progression of the albuminuric stages in patients with T2DM. Cultured immortalized rat proximal tubule cells (IRPTCs) treated with fatty acid-free BSA or advanced glycation end product-modified BSA (AGE-BSA), endocytic ligands of megalin, increased EV excretion, and their C-megalin content. C-megalin excretion from IRPTCs via extracellular vesicles was significantly blocked by an exosome-specific inhibitor, GW4869, indicating that this excretion is mainly exocytosis-mediated. AGE-BSA treatment of IRPTCs caused apparent lysosomal dysfunction, which stimulated multivesicular body formation, resulting in increased exosomal C-megalin excretion. In a high-fat diet-induced, megalin-mediated kidney injury model in mice, urinary C-megalin excretion also increased via UEVs. Collectively, exocytosis-mediated urinary C-megalin excretion is associated with the development and progression of DN in patients with T2DM, particularly due to megalin-mediated lysosomal dysfunction in proximal tubules, and hence it could be a candidate biomarker linked with DN pathogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression