First Author | Niizeki T | Year | 2008 |
Journal | Circ J | Volume | 72 |
Issue | 2 | Pages | 309-17 |
PubMed ID | 18219172 | Mgi Jnum | J:343084 |
Mgi Id | MGI:7562616 | Doi | 10.1253/circj.72.309 |
Citation | Niizeki T, et al. (2008) Diacylglycerol kinase zeta rescues G alpha q-induced heart failure in transgenic mice. Circ J 72(2):309-17 |
abstractText | BACKGROUND: The G alpha q protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG) and protein kinase C (PKC), plays a critical role in the development of cardiac hypertrophy and heart failure (HF). It has been reported that the expression of a constitutively active mutant of the G protein alpha q subunit in the hearts of transgenic mice (G alpha q-TG) induces cardiac hypertrophy and lethal HF. DAG kinase (DGK) catalyzes DAG and controls its cellular levels, thus acting as a regulator of GPCR signaling. It has been found that transgenic mice with cardiac-specific overexpression of DGK zeta (DGK zeta-TG) inhibit GPCR agonist-induced activation of the DAG-PKC signaling and subsequent cardiac hypertrophy, so this study tested the hypothesis that DGK zeta could rescue G alpha q-TG mice from developing HF. METHODS AND RESULTS: Double transgenic mice (G alpha q/DGK zeta-TG) with cardiac-specific overexpression of both DGK zeta and G alpha q were generated by crossing G alpha q-TG with DGK zeta-TG mice, and the pathophysiological consequences were analyzed. DGK zeta prevented cardiac dysfunction, determined by dilatation of left ventricular (LV) dimensions, reduction of LV fractional shortening, and marked increases in LV end-diastolic pressure in G alpha q-TG mice. Translocation of PKC isoforms, phosphorylation activity of c-jun N-terminal kinase and p38 mitogen-activated protein kinase in G alpha q-TG mice were attenuated by DGK zeta. DGK zeta improved the survival rate of G alpha q-TG mice. CONCLUSIONS: These results demonstrate the first evidence that DGK zeta blocks cardiac dysfunction and progression to lethal HF by activated G alpha q protein without detectable adverse effects in the in-vivo heart and suggest that DGK zeta is a novel therapeutic target for HF. |