|  Help  |  About  |  Contact Us

Publication : Oncogenic Determination of a Broad Spectrum of Phenotypes of Hepatocyte-Derived Mouse Liver Tumors.

First Author  Yamamoto M Year  2017
Journal  Am J Pathol Volume  187
Issue  12 Pages  2711-2725
PubMed ID  28964793 Mgi Jnum  J:252126
Mgi Id  MGI:6094583 Doi  10.1016/j.ajpath.2017.07.022
Citation  Yamamoto M, et al. (2017) Oncogenic Determination of a Broad Spectrum of Phenotypes of Hepatocyte-Derived Mouse Liver Tumors. Am J Pathol 187(12):2711-2725
abstractText  Activation of the phosphoinositide 3-kinase-AKT, Yes-associated protein (YAP), and MYC pathways is involved in human liver cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). However, the nature of the interactions among these pathways has remained poorly understood. Herein, we demonstrate the coordination of these pathways during the formation of mouse liver tumors induced by hepatocyte-specific somatic integration of myristoylated AKT, mutant YAP, Myc, or their combinations. Although the introduction of YAP or Myc alone was inefficient in inducing tumors, these proteins accelerated tumorigenesis induced by AKT. The generated tumors demonstrated various histological features: low-grade HCC by AKT/Myc, CC by AKT/YAP, and high-grade HCC by AKT/Myc/YAP. CC induced by AKT/YAP was associated with activation of the Notch pathway. Interestingly, the combination of Myc and YAP generated tumors composed of hepatoblast/stem-like cells expressing mRNA for Afp, Dlk1, Nanog, and Sox2 and occasionally forming immature ducts. Finally, immunohistochemical analysis revealed that human HCC and CC were predominantly associated with phosphorylation of S6 and glycogen synthase kinase-3beta, respectively, and >60% of CC cases were positive for both phosphorylated glycogen synthase kinase--3beta and YAP. Our study suggests that hepatocyte-derived tumors demonstrate a wide spectrum of tumor phenotypes, including HCC, CC, and hepatoblastoma-like, through the combinatory effects of the oncogenic pathways and that the state of the phosphoinositide 3-kinase-AKT pathway is a key determinant of differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression