|  Help  |  About  |  Contact Us

Publication : Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts.

First Author  Yamamoto N Year  2016
Journal  Mol Cell Endocrinol Volume  436
Pages  1-9 PubMed ID  27396899
Mgi Jnum  J:248802 Mgi Id  MGI:6095295
Doi  10.1016/j.mce.2016.07.011 Citation  Yamamoto N, et al. (2016) Heat shock protein 22 (HSPB8) limits TGF-beta-stimulated migration of osteoblasts. Mol Cell Endocrinol 436:1-9
abstractText  Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-beta (TGF-beta)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-beta failed to induce the protein levels. The TGF-beta-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-beta-induced migration. SIS3, a specific inhibitor of TGF-beta-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-beta stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-beta-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-beta type II receptor (TGF-beta RII) but not TGF-beta type I receptor (TGF-beta RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-beta RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-beta RI nor TGF-beta RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-beta-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF-beta-stimulated migration of osteoblasts via suppression of the Smad-dependent pathway, resulting from modulating the protein levels of TGF-beta RII.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression