| First Author | Amadatsu T | Year | 2016 |
| Journal | PLoS One | Volume | 11 |
| Issue | 11 | Pages | e0166285 |
| PubMed ID | 27861531 | Mgi Jnum | J:251632 |
| Mgi Id | MGI:6100626 | Doi | 10.1371/journal.pone.0166285 |
| Citation | Amadatsu T, et al. (2016) Macrophage-Derived Angiopoietin-Like Protein 2 Exacerbates Brain Damage by Accelerating Acute Inflammation after Ischemia-Reperfusion. PLoS One 11(11):e0166285 |
| abstractText | Ischemic stroke is a leading cause of death and disability worldwide. Several reports suggest that acute inflammation after ischemia-reperfusion exacerbates brain damage; however, molecular mechanisms underlying this effect remain unclear. Here, we report that MAC-3-positive immune cells, including infiltrating bone marrow-derived macrophages and activated microglia, express abundant angiopoietin-like protein (ANGPTL) 2 in ischemic mouse brain in a transient middle cerebral artery occlusion (MCAO) model. Both neurological deficits and infarct volume decreased in transient MCAO model mice established in Angptl2 knockout (KO) relative to wild-type mice. Acute brain inflammation after ischemia-reperfusion, as estimated by expression levels of pro-inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor alpha (TNF)-alpha, was significantly suppressed in Angptl2 KO compared to control mice. Moreover, analysis employing bone marrow chimeric models using Angptl2 KO and wild-type mice revealed that infiltrated bone marrow-derived macrophages secreting ANGPTL2 significantly contribute to acute brain injury seen after ischemia-reperfusion. These studies demonstrate that infiltrating bone marrow-derived macrophages promote inflammation and injury in affected brain areas after ischemia-reperfusion, likely via ANGPTL2 secretion in the acute phase of ischemic stroke. |