|  Help  |  About  |  Contact Us

Publication : The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position.

First Author  Mun JY Year  2016
Journal  J Mol Cell Cardiol Volume  91
Pages  141-7 PubMed ID  26718724
Mgi Jnum  J:250966 Mgi Id  MGI:6101578
Doi  10.1016/j.yjmcc.2015.12.014 Citation  Mun JY, et al. (2016) The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position. J Mol Cell Cardiol 91:141-7
abstractText  Mutations in cardiac myosin binding protein C (cMyBP-C), a thick filament protein that modulates contraction of the heart, are a leading cause of hypertrophic cardiomyopathy (HCM). Electron microscopy and 3D reconstruction of thin filaments decorated with cMyBP-C N-terminal fragments suggest that one mechanism of this modulation involves the interaction of cMyBP-C''s N-terminal domains with thin filaments to enhance their Ca(2+)-sensitivity by displacement of tropomyosin from its blocked (low Ca(2+)) to its closed (high Ca(2+)) position. The extent of this tropomyosin shift is reduced when cMyBP-C N-terminal domains are phosphorylated. In the current study, we have examined L348P, a sequence variant of cMyBP-C first identified in a screen of patients with HCM. In L348P, leucine 348 is replaced by proline in cMyBP-C''s regulatory M-domain, resulting in an increase in cMyBP-C''s ability to enhance thin filament Ca(2+)-sensitization. Our goal here was to determine the structural basis for this enhancement by carrying out 3D reconstruction of thin filaments decorated with L348P-mutant cMyBP-C. When thin filaments were decorated with wild type N-terminal domains at low Ca(2+), tropomyosin moved from the blocked to the closed position, as found previously. In contrast, the L348P mutant caused a significantly larger tropomyosin shift, to approximately the open position, consistent with its enhancement of Ca(2+)-sensitization. Phosphorylated wild type fragments showed a smaller shift than unphosphorylated fragments, whereas the shift induced by the L348P mutant was not affected by phosphorylation. We conclude that the L348P mutation causes a gain of function by enhancing tropomyosin displacement on the thin filament in a phosphorylation-independent way.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression