|  Help  |  About  |  Contact Us

Publication : The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect.

First Author  Hewitt SL Year  2017
Journal  Cell Rep Volume  21
Issue  4 Pages  979-993
PubMed ID  29069605 Mgi Jnum  J:254855
Mgi Id  MGI:6104016 Doi  10.1016/j.celrep.2017.09.084
Citation  Hewitt SL, et al. (2017) The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Rep 21(4):979-993
abstractText  Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression