|  Help  |  About  |  Contact Us

Publication : Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts.

First Author  Higashi K Year  2016
Journal  Bone Volume  93
Pages  1-11 PubMed ID  27612439
Mgi Jnum  J:255159 Mgi Id  MGI:6113223
Doi  10.1016/j.bone.2016.09.003 Citation  Higashi K, et al. (2016) Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. Bone 93:1-11
abstractText  Sphingosine-1-phosphate (S1P) is a signaling sphingolipid that also plays crucial roles in bone regeneration. Recently, we reported that the S1P receptors S1PR1 and S1PR2 were mainly expressed in osteoblast-like cells, and that the S1P/S1PR1 signaling pathway up-regulated osteoprotegerin and osteoblast differentiation. However, the involvement of S1P/S1PR2 signaling in osteoblast differentiation is not well understood. Here we investigate the role of S1P/S1PR2-mediated signaling in osteoblast differentiation and clarify the underlying signaling mechanisms. We found that an S1P/S1PR2/Gi-independent signaling pathway activated RhoA activity, leading to phosphorylation of Smad1/5/8 in mouse osteoblast-like MC3T3-E1 cells and primary osteoblasts. Furthermore, this signaling pathway promoted nuclear translocation of Smad4, and increased the amount of Smad6/7 protein in the nucleus. S1P also up-regulated runt-related transcription factor 2 (Runx2) expression through S1PR2/RhoA/ROCK/Smad1/5/8 signaling. Moreover, we found that S1P partially triggered S1PR2/RhoA/ROCK pathway leading to bone formation in vivo. These findings suggest that S1P induces RhoA activity, leading to the phosphorylation of Smad1/5/8, thereby promoting Runx2 expression and differentiation in osteoblasts. Our findings describe novel molecular mechanisms in S1P/S1PR2-mediated osteoblast differentiation that could aid future studies of bone regeneration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression