|  Help  |  About  |  Contact Us

Publication : CD44 fucosylation on mesenchymal stem cell enhances homing and macrophage polarization in ischemic kidney injury.

First Author  Chou KJ Year  2017
Journal  Exp Cell Res Volume  350
Issue  1 Pages  91-102
PubMed ID  27871849 Mgi Jnum  J:260959
Mgi Id  MGI:6151808 Doi  10.1016/j.yexcr.2016.11.010
Citation  Chou KJ, et al. (2017) CD44 fucosylation on mesenchymal stem cell enhances homing and macrophage polarization in ischemic kidney injury. Exp Cell Res 350(1):91-102
abstractText  The lack of homing ability possibly reduces the healing potential of bone-marrow-derived mesenchymal stem cells (MSCs). Therefore, transforming native CD44 on MSCs into a hematopoietic cell E-/L-selectin ligand (HCELL) that possesses potent E-selectin affinity might enhance the homing and regenerative abilities of MSCs. Through fucosyltransferase VI (FTVI) transfection, MSCs were fucosylated on N-glycans of CD44 to become HCELL positive, thus interacting with E-selectin on injured endothelial cells. HCELL expression facilitated MSC homing in kidneys within 24h after injury and reduced lung stasis. An in vitro adhesion assay revealed that transfection enhanced the association between MSCs and hypoxic endothelial cells. In mice treated with HCELL-positive MSCs, the injured kidneys exhibited clusters of homing MSCs, whereas MSCs were rarely observed in mouse kidneys treated with HCELL-negative MSCs. Most MSCs were initially localized at the renal capsule, and some MSCs later migrated inward between tubules. Most homing MSCs were in close contact with inflammatory cells without tubular transdifferentiation. Furthermore, HCELL-positive MSCs substantially alleviated renal injury, partly by enhancing the polarization of infiltrating macrophages. In conclusion, engineering the glycan of CD44 on MSCs through FTVI transfection might enhance renotropism and the regenerating ability of MSCs in ischemic kidney injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression