First Author | Howard MJ | Year | 2004 |
Journal | Osteoarthritis Cartilage | Volume | 12 |
Issue | 1 | Pages | 74-82 |
PubMed ID | 14697685 | Mgi Jnum | J:265955 |
Mgi Id | MGI:6200998 | Doi | 10.1016/j.joca.2003.07.001 |
Citation | Howard MJ, et al. (2004) Distribution of Endo180 receptor and ligand in developing articular cartilage. Osteoarthritis Cartilage 12(1):74-82 |
abstractText | OBJECTIVE: To investigate the expression of a novel member of the mannose receptor family, Endo180 (also known as uPARAP), and the distribution of Endo180 ligand(s) in the articular cartilage and growth plate of normal CBA mice and STR/ort mice, a well characterized model of spontaneous osteoarthritis. DESIGN: A polyclonal anti-Endo180 antibody was used to determine receptor expression. The Endo180 extracellular domain fused to a human immunoglobulin Fc tail was used to detect ligand. RESULTS: Endo180 receptor was strongly expressed in chondrocytes both in vitro and throughout the articular cartilage of young CBA and STR/ort mice. Expression decreased in older animals. In STR/ort mice with osteoarthritic lesions, no upregulation of Endo180 was detected. In the developing growth plate, Endo180 was expressed strongly by the proliferating chondrocytes. In contrast, Endo180 ligand was detected most strongly in hypertrophic zone of the growth plate and only at low levels in articular cartilage. In cultured chondrocytes, Endo180 was localized on the cell surface and in intracellular vesicles. CONCLUSION: Constitutively recycling endocytic receptors function to internalize ligand from the extracellular milieu and the ability of Endo180 to bind both glycosylated ligands and collagens suggests a role in extracellular matrix remodeling. Expression of Endo180 in articular cartilage chondrocytes of young, but not old, mice and the reciprocal expression of Endo180 and its ligands in the growth plate suggest that this receptor is involved in cartilage development but not in cartilage homeostasis. In addition, our data indicates that Endo180 does not appear to play a role in the development or progression of murine osteoarthritis. |