|  Help  |  About  |  Contact Us

Publication : Flightless-I Blocks p62-Mediated Recognition of LC3 to Impede Selective Autophagy and Promote Breast Cancer Progression.

First Author  He JP Year  2018
Journal  Cancer Res Volume  78
Issue  17 Pages  4853-4864
PubMed ID  29898994 Mgi Jnum  J:265551
Mgi Id  MGI:6197377 Doi  10.1158/0008-5472.CAN-17-3835
Citation  He JP, et al. (2018) Flightless-I Blocks p62-Mediated Recognition of LC3 to Impede Selective Autophagy and Promote Breast Cancer Progression. Cancer Res 78(17):4853-4864
abstractText  p62 is a receptor that facilitates selective autophagy by interacting simultaneously with cargoes and LC3 protein on the autophagosome to maintain cellular homeostasis. However, the regulatory mechanism(s) behind this process and its association with breast cancer remain to be elucidated. Here, we report that Flightless-I (FliI), a novel p62-interacting protein, promotes breast cancer progression by impeding selective autophagy. FliI was highly expressed in clinical breast cancer samples, and heterozygous deletion of FliI retarded the development of mammary tumors in PyVT mice. FliI induced p62-recruited cargoes into Triton X-100 insoluble fractions (TI) to form aggregates, thereby blocking p62 recognition of LC3 and hindering p62-dependent selective autophagy. This function of Flil was reinforced by Akt-mediated phosphorylation at Ser436 and inhibited by phosphorylation of Ulk1 at Ser64. Obstruction of autophagic clearance of p62-recruited cargoes by FliI was associated with the accumulation of oxidative damage on proteins and DNA, which could contribute to the development of cancer. Heterozygous knockout of FliI facilitated selectively autophagic clearance of aggregates, abatement of ROS levels, and protein oxidative damage, ultimately retarding mammary cancer progression. In clinical breast cancer samples, Akt-mediated phosphorylation of FliI at Ser436 negatively correlated with long-term prognosis, while Ulk1-induced FliI phosphorylation at Ser64 positively correlated with clinical outcome. Together, this work demonstrates that FliI functions as a checkpoint protein for selective autophagy in the crosstalk between FliI and p62-recruited cargoes, and its phosphorylation may serve as a prognostic marker for breast cancer.Significance: Flightless-I functions as a checkpoint protein for selective autophagy by interacting with p62 to block its recognition of LC3, leading to tumorigenesis in breast cancer.Cancer Res; 78(17); 4853-64. (c)2018 AACR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression