First Author | Pérez-Olivares M | Year | 2018 |
Journal | EMBO Rep | Volume | 19 |
Issue | 10 | PubMed ID | 30126925 |
Mgi Jnum | J:265877 | Mgi Id | MGI:6201872 |
Doi | 10.15252/embr.201845770 | Citation | Perez-Olivares M, et al. (2018) Functional interplay between c-Myc and Max in B lymphocyte differentiation. EMBO Rep 19(10) |
abstractText | The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix-loop-helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c-Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c-Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c-Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c-Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B-cell receptor. These data suggest that c-Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine-tuning the initial response after activation. |