|  Help  |  About  |  Contact Us

Publication : FOXD1-dependent MICU1 expression regulates mitochondrial activity and cell differentiation.

First Author  Shanmughapriya S Year  2018
Journal  Nat Commun Volume  9
Issue  1 Pages  3449
PubMed ID  30158529 Mgi Jnum  J:266097
Mgi Id  MGI:6208915 Doi  10.1038/s41467-018-05856-4
Citation  Shanmughapriya S, et al. (2018) FOXD1-dependent MICU1 expression regulates mitochondrial activity and cell differentiation. Nat Commun 9(1):3449
abstractText  Although many factors contribute to cellular differentiation, the role of mitochondria Ca(2+) dynamics during development remains unexplored. Because mammalian embryonic epiblasts reside in a hypoxic environment, we intended to understand whether mCa(2+) and its transport machineries are regulated during hypoxia. Tissues from multiple organs of developing mouse embryo evidenced a suppression of MICU1 expression with nominal changes on other MCU complex components. As surrogate models, we here utilized human embryonic stem cells (hESCs)/induced pluripotent stem cells (hiPSCs) and primary neonatal myocytes to delineate the mechanisms that control mCa(2+) and bioenergetics during development. Analysis of MICU1 expression in hESCs/hiPSCs showed low abundance of MICU1 due to its direct repression by Foxd1. Experimentally, restoration of MICU1 established the periodic cCa(2+) oscillations and promoted cellular differentiation and maturation. These findings establish a role of mCa(2+) dynamics in regulation of cellular differentiation and reveal a molecular mechanism underlying this contribution through differential regulation of MICU1.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

204 Expression

Trail: Publication