|  Help  |  About  |  Contact Us

Publication : Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention.

First Author  Tang C Year  2019
Journal  PLoS One Volume  14
Issue  5 Pages  e0214873
PubMed ID  31086358 Mgi Jnum  J:275840
Mgi Id  MGI:6306798 Doi  10.1371/journal.pone.0214873
Citation  Tang C, et al. (2019) Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention. PLoS One 14(5):e0214873
abstractText  BACKGROUNDS: Reducing toxicants transplacental rates could contribute to the prevention of congenital heart defects (CHDs). Placental P-glycoprotein (P-gp) plays a vital role in fetal toxicants exposure and subsequently affects the risk of toxicants-induced birth defects. However, data on the role of placental P-gp in decreasing toxicants-induced cardiac anomalies is extremely limited. This study aimed to explore the protective role of placental P-gp in reducing the risk of Di-(2-ethylhexyl)-phthalate (DEHP) induced cardiac anomalies in mice. METHODS: The C57BL mice were randomly divided into four groups: the vehicle group (corn oil, n = 10), 500mg/Kg DEHP group (n = 15), 3mg/Kg verapamil group (n = 10) and 500mg/Kg DEHP & 3mg/Kg verapamil group (n = 20). Pregnant dams in different group received respective intervention by gavage once daily from E6.5-14.5. Maternal weights were monitored every day and samples were collected at E15.5. HE staining was used to examine fetal cardiac malformations. Real-time quantitative PCR (RT-qPCR) and Western-Blot were applied to detect Nkx2.5/Gata4/Tbx5/Mef2c/Chf1 mRNA and protein expression, respectively. The mRNA expression of peroxisome proliferator-activated receptor gamma (PPARgamma) was also determined using RT-qPCR. RESULTS: Co-administration of verapamil and DEHP significantly elevated fetal cardiac malformation rates, in comparison with the DEHP group, the verapamil group and the vehicle group. Different phenotypes of cardiac anomalies, including septal defects and ventricular myocardium noncompaction, were noted both in the DEHP group and the DEHP & verapamil group. The ventricular myocardium noncompaction appeared to be more severe in the DEHP & verapamil group. Fetal cardiac PPARgamma mRNA expression was notably increased and Gata4/Mef2c/Chf1 expression was markedly decreased in the DEHP & verapamil group. CONCLUSION: Placental P-gp inhibition enhances susceptibility to DEHP induced cardiac malformations in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression