First Author | Wu JH | Year | 2020 |
Journal | EMBO Mol Med | Volume | 12 |
Issue | 2 | Pages | e10154 |
PubMed ID | 31943789 | Mgi Jnum | J:285392 |
Mgi Id | MGI:6393144 | Doi | 10.15252/emmm.201810154 |
Citation | Wu JH, et al. (2020) Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med 12(2):e10154 |
abstractText | Diabetic retinopathy (DR) is a common complication of diabetes and leads to blindness. Anti-VEGF is a primary treatment for DR. Its therapeutic effect is limited in non- or poor responders despite frequent injections. By performing a comprehensive analysis of the semaphorins family, we identified the increased expression of Sema4D during oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced retinopathy. The levels of soluble Sema4D (sSema4D) were significantly increased in the aqueous fluid of DR patients and correlated negatively with the success of anti-VEGF therapy during clinical follow-up. We found that Sema4D/PlexinB1 induced endothelial cell dysfunction via mDIA1, which was mediated through Src-dependent VE-cadherin dysfunction. Furthermore, genetic disruption of Sema4D/PlexinB1 or intravitreal injection of anti-Sema4D antibody reduced pericyte loss and vascular leakage in STZ model as well as alleviated neovascularization in OIR model. Moreover, anti-Sema4D had a therapeutic advantage over anti-VEGF on pericyte dysfunction. Anti-Sema4D and anti-VEGF also conferred a synergistic therapeutic effect in two DR models. Thus, this study indicates an alternative therapeutic strategy with anti-Sema4D to complement or improve the current treatment of DR. |