|  Help  |  About  |  Contact Us

Publication : Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte.

First Author  Wu J Year  2020
Journal  Metabolism Volume  103
Pages  154006 PubMed ID  31715176
Mgi Jnum  J:292493 Mgi Id  MGI:6436167
Doi  10.1016/j.metabol.2019.154006 Citation  Wu J, et al. (2020) Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 103:154006
abstractText  OBJECTIVE: Glucose and lipid metabolism disorders are a major risk factor for type II diabetes and cardiovascular diseases. Evidence has indicated that the interplay between the liver and adipose tissue is crucial in maintaining energy homeostasis. Recently, the interaction between two distant endocrine organs mainly focuses on the regulation of hormones and receptors. However, as a novel carrier in the inter-tissue communication, exosomes plays a role in liver-fat crosstalk, but its effects on glucose and lipid metabolisms are still unclear. In this study, we sought to investigate the effects of hepatic exosome-derived miR-130a-3p in the regulation of glucose/lipid metabolism in adipose tissues. MEASURE: In vivo, we constructed generalized miR-130a-3p knockout (130KO) and overexpressed (130OE) mice. Wild type (WT), 130KO and 130OE mice (n=10) were assigned to a randomized controlled trial and were fed diets with either 10% (standard diet, SD) or 60% (high-fat diet, HFD) of total calories from fat (lard). Next, hepatic exosomes were extracted from WT-SD, 130KO-SD and 130OE-SD mice (WT-EXO, KO-EXO, OE-EXO), and 130KO mice were injected with 100mg hepatic exosomes of different sources via tail-vein (once every 48h) for 28days, fed with HFD. In vitro, 3T3-L1 cells were treated with miR-130a-3p mimics, inhibitor and hepatic exosomes. Growth performance and glucose and lipid metabolic profiles were examined. RESULTS: After feeding with HFD, the weights of 130KO mice were markedly higher than WT mice. Over-expression of miR-130a-3p in 130OE mice and intravenous injection of 130OE-EXO in 130KO mice contributed to a positive correlation with the recovery of insulin resistance. In addition, miR-130a-3p mimics and 130OE-EXO treatment of 3T3-L1 cells exhibited decreasing generations of lipid droplets and increasing glucose uptake. Conversely, inhibition of miR-130a-3p in vitro and in vivo resulted in opposite phenotype changes. Furthermore, PHLPP2 was identified as a direct target of miR-130a-3p, and the hepatic exosome-derived miR-130a-3p could improve glucose intolerance via suppressing PHLPP2 to activate AKT-AS160-GLUT4 signaling pathway in adipocytes. CONCLUSIONS: We demonstrated that hepatic exosome-derived miR-130a regulated energy metabolism in adipose tissues, and elucidated a new molecular mechanism that hepatic exosome-derived miR-130a-3p is a crucial participant in organismic energy homeostasis through mediating crosstalk between the liver and adipose tissues.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression