|  Help  |  About  |  Contact Us

Publication : Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

First Author  Lennox AL Year  2020
Journal  Neuron Volume  106
Issue  3 Pages  404-420.e8
PubMed ID  32135084 Mgi Jnum  J:292736
Mgi Id  MGI:6449362 Doi  10.1016/j.neuron.2020.01.042
Citation  Lennox AL, et al. (2020) Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development. Neuron 106(3):404-420.e8
abstractText  De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression