|  Help  |  About  |  Contact Us

Publication : Isocitrate dehydrogenase 1 mutation enhances 24(S)-hydroxycholesterol production and alters cholesterol homeostasis in glioma.

First Author  Yang R Year  2020
Journal  Oncogene Volume  39
Issue  40 Pages  6340-6353
PubMed ID  32855525 Mgi Jnum  J:296229
Mgi Id  MGI:6460163 Doi  10.1038/s41388-020-01439-0
Citation  Yang R, et al. (2020) Isocitrate dehydrogenase 1 mutation enhances 24(S)-hydroxycholesterol production and alters cholesterol homeostasis in glioma. Oncogene 39(40):6340-6353
abstractText  Isocitrate dehydrogenase (IDH) mutation is the most important initiating event in gliomagenesis, and the increasing evidence shows that IDH mutation is associated with the metabolic reprogramming in the tumor. Dysregulated cholesterol metabolism is a hallmark of tumor cells, but the cholesterol homeostasis in IDH-mutated glioma is still unknown. In this study, we found that astrocyte-specific mutant IDH1(R132H) knockin reduced the cholesterol contents and damaged the structure of myelin in mouse brains. In U87 and U251 cells, the expression of mutant IDH1 consistently reduced the cholesterol levels. Furthermore, we found that IDH1 mutation enhanced the production of 24(S)-hydroxycholesterol (24-OHC), which is not only the metabolite of cholesterol elimination, but also functions as an endogenous ligand for the liver X receptors (LXRs). In IDH1-mutant glioma cells, the elevated 24-OHC activated LXRs, which consequently accelerated the low-density lipoprotein receptor (LDLR) degradation by upregulating the inducible degrader of the LDLR (IDOL). The reduced LDLR expressions in IDH1-mutant glioma cells abated the uptakes of low-density lipoprotein (LDL) to decrease the cholesterol influx. In addition, the activated LXRs also promoted the cholesterol efflux by elevating the ATP-binding cassette transporter A1 (ABCA1), ABCG1, and apolipoprotein E (ApoE) in both IDH1-mutant astrocytes and glioma cells. As a feedback, the reduced cholesterol levels stimulated the cholesterol biosynthesis, which made IDH1-mutated glioma cells more sensitive to atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase. The altered cholesterol homeostasis regulated by mutant IDH provides a pivotal therapeutical strategy for the IDH-mutated gliomas.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression