First Author | Torii S | Year | 2020 |
Journal | Int J Mol Sci | Volume | 21 |
Issue | 4 | PubMed ID | 32054064 |
Mgi Jnum | J:298493 | Mgi Id | MGI:6480180 |
Doi | 10.3390/ijms21041202 | Citation | Torii S, et al. (2020) Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson's Disease and Its Substrate-Involved Mouse Experimental Models. Int J Mol Sci 21(4):1202 |
abstractText | Parkinson's disease (PD) is a common neurodegenerative disorder. Recent identification of genes linked to familial forms of PD has revealed that post-translational modifications, such as phosphorylation and ubiquitination of proteins, are key factors in disease pathogenesis. In PD, E3 ubiquitin ligase Parkin and the serine/threonine-protein kinase PTEN-induced kinase 1 (PINK1) mediate the mitophagy pathway for mitochondrial quality control via phosphorylation and ubiquitination of their substrates. In this review, we first focus on well-characterized PINK1 phosphorylation motifs. Second, we describe our findings concerning relationships between Parkin and HtrA2/Omi, a protein involved in familial PD. Third, we describe our findings regarding inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a member of PINK1 and Parkin substrates, involved in neurodegeneration during PD. IPAS is a dual-function protein involved in transcriptional repression of hypoxic responses and the pro-apoptotic activities. |