|  Help  |  About  |  Contact Us

Publication : A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain.

First Author  Joglekar A Year  2021
Journal  Nat Commun Volume  12
Issue  1 Pages  463
PubMed ID  33469025 Mgi Jnum  J:357073
Mgi Id  MGI:6504766 Doi  10.1038/s41467-020-20343-5
Citation  Joglekar A, et al. (2021) A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun 12(1):463
abstractText  Splicing varies across brain regions, but the single-cell resolution of regional variation is unclear. We present a single-cell investigation of differential isoform expression (DIE) between brain regions using single-cell long-read sequencing in mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Isoform tests for DIE show better performance than exon tests. We detect hundreds of DIE events traceable to cell types, often corresponding to functionally distinct protein isoforms. Mostly, one cell type is responsible for brain-region specific DIE. However, for fewer genes, multiple cell types influence DIE. Thus, regional identity can, although rarely, override cell-type specificity. Cell types indigenous to one anatomic structure display distinctive DIE, e.g. the choroid plexus epithelium manifests distinct transcription-start-site usage. Spatial transcriptomics and long-read sequencing yield a spatially resolved splicing map. Our methods quantify isoform expression with cell-type and spatial resolution and it contributes to further our understanding of how the brain integrates molecular and cellular complexity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression