|  Help  |  About  |  Contact Us

Publication : Loss of p62 impairs bone turnover and inhibits PTH-induced osteogenesis.

First Author  Agas D Year  2020
Journal  J Cell Physiol Volume  235
Issue  10 Pages  7516-7529
PubMed ID  32100883 Mgi Jnum  J:303511
Mgi Id  MGI:6514477 Doi  10.1002/jcp.29654
Citation  Agas D, et al. (2020) Loss of p62 impairs bone turnover and inhibits PTH-induced osteogenesis. J Cell Physiol 235(10):7516-7529
abstractText  The p62 (also named sequestosome1/SQSTM1) is multidomain and multifunctional protein associated with several physiological and pathological conditions. A number of studies evidenced an involvement of p62 on the disruptive bone scenarios due to its participation in the inflammatory/osteoclastogenic pathways. However, so far, information regarding the function of p62 in the fine-tuned processes underpinning the bone physiology are not well-defined and are sometime discordant. We, previously, demonstrated that the intramuscular administration of a plasmid coding for p62 was able to contrast bone loss in a mouse model of osteopenia. Here, in vitro findings showed that the p62 overexpression in murine osteoblasts precursors enhanced their maturation while the p62 depletion by a specific siRNA, decreased osteoblasts differentiation. Consistently, the activity of osteoblasts from p62(-/-) mice was reduced compared with wild-type. Also, morphometric analyses of bone from p62 knockout mice revealed a pathological phenotype characterized by a lower turnover that could be explained by the poor Runx2 protein synthesis in absence of p62. Furthermore, we demonstrated that the parathyroid hormone (PTH) regulates p62 expression and that the osteogenic effects of this hormone were totally abrogated in osteoblasts from p62-deficient mice. Therefore, these findings, for the first time, highlight the important role of p62 both for the basal and for PTH-stimulated bone remodeling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression