First Author | Kim HR | Year | 2018 |
Journal | Sci Rep | Volume | 8 |
Issue | 1 | Pages | 5503 |
PubMed ID | 29615809 | Mgi Jnum | J:306355 |
Mgi Id | MGI:6708379 | Doi | 10.1038/s41598-018-23816-2 |
Citation | Kim HR, et al. (2018) TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Sci Rep 8(1):5503 |
abstractText | TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2-G-actin polymerization and Arp2/3 complex inhibition-may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types. |