|  Help  |  About  |  Contact Us

Publication : Chromatin Regulator SRG3 Overexpression Protects against LPS/D-GalN-Induced Sepsis by Increasing IL10-Producing Macrophages and Decreasing IFNγ-Producing NK Cells in the Liver.

First Author  Lee SW Year  2021
Journal  Int J Mol Sci Volume  22
Issue  6 PubMed ID  33809795
Mgi Jnum  J:308441 Mgi Id  MGI:6714553
Doi  10.3390/ijms22063043 Citation  Lee SW, et al. (2021) Chromatin Regulator SRG3 Overexpression Protects against LPS/D-GalN-Induced Sepsis by Increasing IL10-Producing Macrophages and Decreasing IFNgamma-Producing NK Cells in the Liver. Int J Mol Sci 22(6)
abstractText  We previously showed that ubiquitous overexpression of the chromatin remodeling factor SWItch3-related gene (SRG3) promotes M2 macrophage differentiation, resulting in anti-inflammatory responses in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Since hepatic macrophages are responsible for sepsis-induced liver injury, we investigated herein the capacity of transgenic SRG3 overexpression (SRG3(beta-actin) mice) to modulate sepsis in mice exposed to lipopolysaccharide (LPS) plus d-galactosamine (d-GalN). Our results demonstrated that ubiquitous SRG3 overexpression significantly protects mice from LPS/d-GalN-induced lethality mediated by hepatic M1 macrophages. These protective effects of SRG3 overexpression correlated with the phenotypic conversion of hepatic macrophages from an M1 toward an M2 phenotype. Furthermore, SRG3(beta-actin) mice had decreased numbers and activation of natural killer (NK) cells but not natural killer T (NKT) cells in the liver during sepsis, indicating that SRG3 overexpression might contribute to cross-talk between NK cells and macrophages in the liver. Finally, we demonstrated that NKT cell-deficient CD1d KO/SRG3(beta-actin) mice are protected from LPS/d-GalN-induced sepsis, indicating that NKT cells are dispensable for SRG3-mediated sepsis suppression. Taken together, our findings provide strong evidence that SRG3 overexpression may serve as a therapeutic approach to control overwhelming inflammatory diseases such as sepsis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression