|  Help  |  About  |  Contact Us

Publication : Context-dependent modulation of aggressiveness of pediatric tumors by individual oncogenic RAS isoforms.

First Author  Bauer J Year  2021
Journal  Oncogene Volume  40
Issue  31 Pages  4955-4966
PubMed ID  34172934 Mgi Jnum  J:309414
Mgi Id  MGI:6757882 Doi  10.1038/s41388-021-01904-4
Citation  Bauer J, et al. (2021) Context-dependent modulation of aggressiveness of pediatric tumors by individual oncogenic RAS isoforms. Oncogene 40(31):4955-4966
abstractText  A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression