First Author | Fritzsching B | Year | 2017 |
Journal | J Allergy Clin Immunol | Volume | 140 |
Issue | 1 | Pages | 190-203.e5 |
PubMed ID | 27865862 | Mgi Jnum | J:315465 |
Mgi Id | MGI:6830494 | Doi | 10.1016/j.jaci.2016.09.045 |
Citation | Fritzsching B, et al. (2017) Impaired mucus clearance exacerbates allergen-induced type 2 airway inflammation in juvenile mice. J Allergy Clin Immunol 140(1):190-203.e5 |
abstractText | BACKGROUND: Type 2 airway inflammation plays a central role in the pathogenesis of allergen-induced asthma, but the underlying mechanisms remain poorly understood. Recently, we demonstrated that reduced mucociliary clearance, a characteristic feature of asthma, produces spontaneous type 2 airway inflammation in juvenile beta-epithelial Na(+) channel (Scnn1b)-transgenic (Tg) mice. OBJECTIVE: We sought to determine the role of impaired mucus clearance in the pathogenesis of allergen-induced type 2 airway inflammation and identify cellular sources of the signature cytokine IL-13. METHODS: We challenged juvenile Scnn1b-Tg and wild-type mice with Aspergillus fumigatus and house dust mite allergen and compared the effects on airway eosinophilia, type 2 cytokine levels, goblet cell metaplasia, and airway hyperresponsiveness. Furthermore, we determined cellular sources of IL-13 and effects of genetic deletion of the key type 2 signal-transducing molecule signal transducer and activator of transcription 6 (STAT6) and evaluated the effects of therapeutic improvement of mucus clearance. RESULTS: Reduced mucociliary allergen clearance exacerbated Stat6-dependent secretion of type 2 cytokines, airway eosinophilia, and airway hyperresponsiveness in juvenile Scnn1b-Tg mice. IL-13 levels were increased in airway epithelial cells, macrophages, type 2 innate lymphoid cells, and TH2 cells along with increased Il33 expression in the airway epithelium of Scnn1b-Tg mice. Treatment with the epithelial Na(+) channel blocker amiloride, improving airway surface hydration and mucus clearance, reduced allergen-induced inflammation in Scnn1b-Tg mice. CONCLUSION: Our data support that impaired clearance of inhaled allergens triggering IL-13 production by multiple cell types in the airways plays an important role in the pathogenesis of type 2 airway inflammation and suggests therapeutic improvement of mucociliary clearance as a novel treatment strategy for children with allergen-induced asthma. |