|  Help  |  About  |  Contact Us

Publication : Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK.

First Author  Gallagher MP Year  2021
Journal  Proc Natl Acad Sci U S A Volume  118
Issue  35 PubMed ID  34452995
Mgi Jnum  J:309571 Mgi Id  MGI:6758718
Doi  10.1073/pnas.2025825118 Citation  Gallagher MP, et al. (2021) Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proc Natl Acad Sci U S A 118(35):e2025825118
abstractText  The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2-inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-kappaB translocation in naive OT-I CD8(+) cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-kappaB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-kappaB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-kappaB and AP-1 motifs. Specific inhibition of NF-kappaB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-kappaB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression