|  Help  |  About  |  Contact Us

Publication : Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis.

First Author  Konzack A Year  2015
Journal  Antioxid Redox Signal Volume  23
Issue  14 Pages  1059-75
PubMed ID  26422659 Mgi Jnum  J:318864
Mgi Id  MGI:6863059 Doi  10.1089/ars.2015.6318
Citation  Konzack A, et al. (2015) Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal 23(14):1059-75
abstractText  AIMS: One of the cancer hallmarks is mitochondrial dysfunction associated with oxidative stress. Among the first line of defense against oxidative stress is the dismutation of superoxide radicals, which in the mitochondria is carried out by manganese superoxide dismutase (MnSOD). Accordingly, carcinogenesis would be associated with a dysregulation in MnSOD expression. However, the association studies available so far are conflicting, and no direct proof concerning the role of MnSOD as a tumor promoter or suppressor has been provided. Therefore, we investigated the role of MnSOD in carcinogenesis by studying the effect of MnSOD deficiency in cells and in the livers of mice. RESULTS: We found that loss of MnSOD in hepatoma cells contributed to their conversion toward a more malignant phenotype, affecting all cellular properties generally associated with metabolic transformation and tumorigenesis. In vivo, hepatocyte-specific MnSOD-deficient mice showed changed organ architecture, increased expression of tumor markers, and a faster response to carcinogenesis. Moreover, deficiency of MnSOD in both the in vitro and in vivo model reduced beta-catenin and hypoxia-inducible factor-1alpha levels. INNOVATION: The present study shows for the first time the important correlation between MnSOD presence and the regulation of two major pathways involved in carcinogenesis, the Wnt/beta-catenin and hypoxia signaling pathway. CONCLUSION: Our study points toward a tumor suppressive role of MnSOD in liver, where the Wnt/beta-catenin and hypoxia pathway may be crucial elements.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression