|  Help  |  About  |  Contact Us

Publication : Loss of Immune Tolerance Is Controlled by ICOS in Sle1 Mice.

First Author  Mittereder N Year  2016
Journal  J Immunol Volume  197
Issue  2 Pages  491-503
PubMed ID  27296665 Mgi Jnum  J:329789
Mgi Id  MGI:6863261 Doi  10.4049/jimmunol.1502241
Citation  Mittereder N, et al. (2016) Loss of Immune Tolerance Is Controlled by ICOS in Sle1 Mice. J Immunol 197(2):491-503
abstractText  ICOS, a member of the CD28 family, represents a key molecule that regulates adaptive responses to foreign Ags. ICOS is prominently expressed on T follicular helper (TFH) cells, a specialized CD4(+) T cell subset that orchestrates B cell differentiation within the germinal centers and humoral response. However, the contribution of ICOS and TFH cells to autoantibody profiles under pathological conditions has not been thoroughly investigated. We used the Sle1 lupus-prone mouse model to examine the role of ICOS in the expansion and function of pathogenic TFH cells. Genetic deletion of ICOS impacted the expansion of TFH cells in B6.Sle1 mice and inhibited the differentiation of B lymphocytes into plasma cells. The phenotypic changes observed in B6.Sle1-ICOS-knockout mice were also associated with a significant reduction in class-switched IgG, and anti-nucleosomal IgG-secreting B cells compared with B6.Sle1 animals. The level of vascular cell adhesion protein 1, a molecule that was shown to be elevated in patients with SLE and in lupus models, was also increased in an ICOS-dependent manner in Sle1 mice and correlated with autoantibody levels. The elimination of ICOS-expressing CD4(+) T cells in B6.Sle1 mice, using a glyco-engineered anti-ICOS-depleting Ab, resulted in a significant reduction in anti-nucleosomal autoantibodies. Our results indicate that ICOS regulates the ontogeny and homeostasis of B6.Sle1 TFH cells and influences the function of TFH cells during aberrant germinal center B cell responses. Therapies targeting the ICOS signaling pathway may offer new opportunities for the treatment of lupus and other autoimmune diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression