First Author | Lee A | Year | 2014 |
Journal | Antioxid Redox Signal | Volume | 21 |
Issue | 14 | Pages | 1986-2001 |
PubMed ID | 24893265 | Mgi Jnum | J:318185 |
Mgi Id | MGI:6858652 | Doi | 10.1089/ars.2014.5983 |
Citation | Lee A, et al. (2014) The role of SUMO-1 in cardiac oxidative stress and hypertrophy. Antioxid Redox Signal 21(14):1986-2001 |
abstractText | AIMS: Small ubiquitin-like modifier type 1 (SUMO-1) has been shown to play a critical role in the dysfunction of the cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) pump in the setting of heart failure. In cardiac hypertrophy, the role of SUMO-1 has not been defined and our study's goals were to examine the effects of modulating SUMO-1 on the hypertrophic response both in vitro and in vivo and to examine whether oxidative stress (during cardiac hypertrophy) is abrogated by SUMO-1 gene transfer. RESULTS: In mice undergoing transverse aortic constriction (TAC), SUMO-1 levels increased slightly during the compensated stage of hypertrophy and then dropped sharply during the transition to heart failure. In isolated cardiomyocytes, SUMO-1 gene transfer inhibited the hypertrophic response in the presence of phenylephrine. Adeno-associated vector type 9 (AAV9) gene transfer of SUMO-1 prevented the heart from undergoing hypertrophy after TAC and prevented the development of left ventricular dysfunction. Furthermore, SUMO-1 gene transfer blocked the negative effects of H2O2 on SERCA2a activity in cardiac myocytes, while in vivo indices of oxidative stress were decreased by SUMO-1 in cardiac hypertrophy and heart failure. INNOVATION AND CONCLUSION: The results of this study indicate that post-translational modifications of SERCA2a caused by the toxic environment of the hypertrophied and failing myocardium can be prevented by SUMO-1. Antioxid. Redox Signal. 21, 1986-2001. |