First Author | Feng D | Year | 2022 |
Journal | Sci Adv | Volume | 8 |
Issue | 39 | Pages | eabq2423 |
PubMed ID | 36179025 | Mgi Jnum | J:330007 |
Mgi Id | MGI:7355669 | Doi | 10.1126/sciadv.abq2423 |
Citation | Feng D, et al. (2022) Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage. Sci Adv 8(39):eabq2423 |
abstractText | Blood-brain barrier (BBB) injury critically exacerbates the poor prognosis of patients with subarachnoid hemorrhage (SAH). The massively increased matrix metalloproteinases 9 (MMP-9) plays a deleterious role in BBB. However, the main source and mechanism of MMP-9 production after SAH remain unclear. We reported that the increased MMP-9 was mainly derived from reactive astrocytes after SAH. Ndrg2 knockout in astrocytes inhibited MMP-9 expression after SAH and attenuated BBB damage. Astrocytic Ndrg2 knockout decreased the phosphorylation of Smad2/3 and the transcription of MMP-9. Notably, cytoplasmic NDRG2 bound to the protein phosphatase PPM1A and restricted the dephosphorylation of Smad2/3. Accordingly, TAT-QFNP12, a novel engineered peptide that could block the NDRG2-PPM1A binding and reduce Smad2/3 dephosphorylation, decreased astrocytic MMP-9 production and BBB disruption after SAH. In conclusion, this study identified NDRG2-PPM1A signaling in reactive astrocytes as a key switch for MMP-9 production and provided a novel therapeutic avenue for BBB protection after SAH. |