|  Help  |  About  |  Contact Us

Publication : Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage.

First Author  Feng D Year  2022
Journal  Sci Adv Volume  8
Issue  39 Pages  eabq2423
PubMed ID  36179025 Mgi Jnum  J:330007
Mgi Id  MGI:7355669 Doi  10.1126/sciadv.abq2423
Citation  Feng D, et al. (2022) Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage. Sci Adv 8(39):eabq2423
abstractText  Blood-brain barrier (BBB) injury critically exacerbates the poor prognosis of patients with subarachnoid hemorrhage (SAH). The massively increased matrix metalloproteinases 9 (MMP-9) plays a deleterious role in BBB. However, the main source and mechanism of MMP-9 production after SAH remain unclear. We reported that the increased MMP-9 was mainly derived from reactive astrocytes after SAH. Ndrg2 knockout in astrocytes inhibited MMP-9 expression after SAH and attenuated BBB damage. Astrocytic Ndrg2 knockout decreased the phosphorylation of Smad2/3 and the transcription of MMP-9. Notably, cytoplasmic NDRG2 bound to the protein phosphatase PPM1A and restricted the dephosphorylation of Smad2/3. Accordingly, TAT-QFNP12, a novel engineered peptide that could block the NDRG2-PPM1A binding and reduce Smad2/3 dephosphorylation, decreased astrocytic MMP-9 production and BBB disruption after SAH. In conclusion, this study identified NDRG2-PPM1A signaling in reactive astrocytes as a key switch for MMP-9 production and provided a novel therapeutic avenue for BBB protection after SAH.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression