First Author | Yang C | Year | 2023 |
Journal | Int J Mol Sci | Volume | 24 |
Issue | 5 | PubMed ID | 36902353 |
Mgi Jnum | J:334065 | Mgi Id | MGI:7445771 |
Doi | 10.3390/ijms24054921 | Citation | Yang C, et al. (2023) The CaSR Modulator NPS-2143 Reduced UV-Induced DNA Damage in Skh:hr1 Hairless Mice but Minimally Inhibited Skin Tumours. Int J Mol Sci 24(5) |
abstractText | The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm(2)) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)(2) vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation. |