|  Help  |  About  |  Contact Us

Publication : Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness.

First Author  Sopariwala DH Year  2023
Journal  FASEB J Volume  37
Issue  2 Pages  e22727
PubMed ID  36583689 Mgi Jnum  J:338756
Mgi Id  MGI:7514442 Doi  10.1096/fj.202201518R
Citation  Sopariwala DH, et al. (2023) Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness. FASEB J 37(2):e22727
abstractText  Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRalpha/gamma) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRalpha/gamma knockout mice to investigate the effect of ERRalpha/gamma deletion on muscle and exercise parameters. Individual knockout of ERRalpha/gamma did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRalpha and ERRgamma together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRalpha/gamma mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression