|  Help  |  About  |  Contact Us

Publication : DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy.

First Author  Lin HP Year  2024
Journal  EMBO J Volume  43
Issue  22 Pages  5548-5585
PubMed ID  39379554 Mgi Jnum  J:360828
Mgi Id  MGI:7764597 Doi  10.1038/s44318-024-00242-x
Citation  Lin HP, et al. (2024) DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy. EMBO J
abstractText  Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression