|  Help  |  About  |  Contact Us

HT Experiment :

Experiment Id  E-GEOD-15848 Series Id  GSE15848
Name  Functional genomic analysis of frataxin deficiency, Illumina data Experiment Type  transcription profiling by array
Study Type  WT vs. Mutant Source  ArrayExpress
Curation Date  2018-11-28
description  Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia Friedreich's ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus, and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARgamma coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARgamma pathway affects frataxin levels in vitro, supporting PPARgamma as a novel therapeutic target in FRDA. To compare frataxin deficient (KIKO) mice vs. WT, heart, skeletal muscle, and liver.
  • variables:
  • genotype,
  • anatomical structure

1 Publications

Trail: HTExperiment

22 Samples

Trail: HTExperiment