|  Help  |  About  |  Contact Us

HT Experiment :

Experiment Id  E-GEOD-14710 Series Id  GSE14710
Name  Transcription profiling of mouse muscle mutant to reveals skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b Experiment Type  transcription profiling by array
Study Type  WT vs. Mutant Source  ArrayExpress
Curation Date  2018-11-28
description  In skeletal muscle, STAT5a/b transcription factors are critical for normal postnatal growth, whole-animal glucose homeostasis, and local IGF-1 production. These observations have led us to hypothesize that STAT5a/b are critical for maintenance of normal muscle mass and function. To investigate this, mice with a skeletal muscle-specific deletion of the Stat5a/b genes (Stat5MKO) were used. Stat5MKO mice displayed reduced muscle mass, altered fiber-type distribution and reduced activity. On a molecular level, gene expression in skeletal muscle of Stat5MKO and control mice was analyzed by microarrays and real-time PCR, both in the presence and absence of growth hormone (GH) stimulation. Several genes involved in muscle growth, fiber-type and metabolism were significantly changed. Specifically in the quadriceps, a muscle almost exclusively composed of type II fibers, the absence of STAT5a/b led to increased expression of several genes associated with type I fibers and the de novo appearance of type I fibers. Additionally, it is shown here that expression of the androgen receptor gene (Ar) is controlled by GH through STAT5a/b. The link between STAT5a/b and Ar gene is likely through direct transcriptional regulation, as chromatin immunoprecipitaion of the Ar promoter region in C2C12 myoblasts was accomplished by antibodies against STAT5a. These experiments demonstrate an important role for STAT5a/b in skeletal muscle physiology and they provide a direct link to androgen signaling. Experiment Overall Design: Total 6 WT controls and 6 stat5a/b KO mice, treated or w/o GH
  • variables:
  • genotype

1 Publications

Trail: HTExperiment

12 Samples

Trail: HTExperiment