|  Help  |  About  |  Contact Us

HT Experiment :

Experiment Id  E-GEOD-30017 Series Id  GSE30017
Name  Widespread regulated alternative splicing of single codons accelerates proteome evolution Experiment Type  RNA-Seq
Study Type  Baseline Source  ArrayExpress
Curation Date  2018-08-21
description  Thousands of human genes contain introns ending in NAGNAG motifs (N any nucleotide), where both NAGs can function as 3' splice sites, yielding isoforms differing by inclusion/exclusion of just three bases. However, the functional importance of NAGNAG alternative splicing is highly controversial. Using very deep RNA-Seq data from sixteen human and eight mouse tissues, we found that approximately half of alternatively spliced NAGNAGs undergo tissue-specific regulation and that regulated events have been selectively retained: alternative splicing of strongly tissue-specific NAGNAGs was ten times as likely to be conserved between species as for non-tissue-specific events. Further, alternative splicing of human NAGNAGs was associated with an order of magnitude increase in the frequency of exon length changes at orthologous mouse/rat exon boundaries, suggesting that NAGNAGs accelerate exon evolution. Together, our analyses show that NAGNAG alternative splicing constitutes a major generator of tissue-specific proteome diversity and accelerates evolution of proteins at exon-exon boundaries. mRNA-Seq of sixteen human and eight mouse tissues. Supplementary files: human.nagnag.junctions.gff and mouse.nagnag.junctions.gff are the annotation files (in GFF3 format) corresponding to the 'bwtout' mapped reads files linked to the Sample records. Raw data files provided for Samples GSM742937-GSM742952 only.
  • variables:
  • anatomical structure,
  • bulk RNA-seq,
  • species

1 Publications

Trail: HTExperiment

48 Samples

Trail: HTExperiment