|  Help  |  About  |  Contact Us

Publication : MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus.

First Author  Canté-Barrett K Year  2022
Journal  JCI Insight Volume  7
Issue  13 PubMed ID  35536646
Mgi Jnum  J:326847 Mgi Id  MGI:7326566
Doi  10.1172/jci.insight.150363 Citation  Cante-Barrett K, et al. (2022) MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 7(13):e150363
abstractText  Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression