| First Author | Dong M | Year | 2017 |
| Journal | Biochem Biophys Res Commun | Volume | 489 |
| Issue | 4 | Pages | 426-431 |
| PubMed ID | 28559142 | Mgi Jnum | J:254322 |
| Mgi Id | MGI:6103003 | Doi | 10.1016/j.bbrc.2017.05.159 |
| Citation | Dong M, et al. (2017) AG1296 enhances plaque stability via inhibiting inflammatory responses and decreasing MMP-2 and MMP-9 expression in ApoE-/- mice. Biochem Biophys Res Commun 489(4):426-431 |
| abstractText | BACKGROUND: Atherosclerosis is a chronic process that progresses to unstable plaques. Plaque rupture leads to deleterious consequences such as acute coronary syndrome, thrombosis and stroke. AG1296 is a potent tyrosine kinase inhibitor which is able to block PDGF-PDGFR signaling pathway. This study aims to assess the effect of AG1296 on plaque stability and explore the potential mechanisms. METHODS: Atherosclerotic plaques were induced in carotid arteries in ApoE-/- mice by perivascular collar placement. All mice were randomly divided into PBS and AG1296 groups. 3 weeks after the surgery, the carotid arteries were harvested for histological analysis. RESULTS: In AG1296 group, plaque area decreased by 41.5% (p = 0.0041) and the contents of macrophages and lipids decreased by 43.5% (p = 0.0003) and 35.6% (p = 0.0032) respectively. The contents of smooth muscle cells increased by 22.3% (p = 0.0214) in AG1296 group. Vulnerable index decreased by 48.3% (p = 0.0002). The inflammation factors IL-6 and TNF- alpha decreased by 49.0% (p = 0.0008) and 51.8% (p < 0.0001) and matrix metalloproteinases MMP-2 and MMP-9 decreased by 54.1% (p = 0.0004) and 37.1% (p < 0.0001) in AG1296 group. M1 macrophage markers (MCP-1) were downregulated by 30.3% (p = 0.0007) and M2 macrophage markers (ARG-1) were increased by 55.2% (p = 0.0009) in AG1296 group. CONCLUSION: AG1296 inhibited the atherosclerotic plaque progression and enhanced plaque stability by inhibiting inflammatory responses, reducing the expression of matrix metalloproteinases and promoting macrophages from proinflammatory phenotype to anti-inflammatory phenotype. |