|  Help  |  About  |  Contact Us

Publication : The adverse cardiopulmonary phenotype of caveolin-1 deficient mice is mediated by a dysfunctional endothelium.

First Author  Wunderlich C Year  2008
Journal  J Mol Cell Cardiol Volume  44
Issue  5 Pages  938-47
PubMed ID  18417152 Mgi Jnum  J:136260
Mgi Id  MGI:3795803 Doi  10.1016/j.yjmcc.2008.02.275
Citation  Wunderlich C, et al. (2008) The adverse cardiopulmonary phenotype of caveolin-1 deficient mice is mediated by a dysfunctional endothelium. J Mol Cell Cardiol 44(5):938-47
abstractText  Recently generated caveolin-1 deficient mice (cav-1(-/-)) display several physiological alterations such as severe heart failure and lung fibrosis. The molecular mechanisms how the loss of caveolin-1 (cav-1) mediates these alterations are currently under debate. A plethora of studies support a role of cav-1 as a negative regulator of endothelial nitric oxide synthase (eNOS). Accordingly, constitutive eNOS hyperactivation was observed in cav-1(-/-). Given the hyperactivated eNOS enzyme we hypothesized that disturbed eNOS function is involved in the development of the cardiopulmonary pathologies in cav-1(-/-). The present study argues that loss of cav-1 results in enhanced eNOS activity but not in increased vascular tetrahydrobiopterin (BH(4)) levels (which acts as an essential eNOS cofactor) thereby causing a stoichiometric discordance between eNOS activity and BH(4) sufficient to cause dysfunctional eNOS signaling. The resultant oxidative stress is largely responsible for major cardiac and pulmonary defects observed in cav-1(-/-). BH(4) donation to cav-1(-/-) led to a normalized BH(4)/BH(2) ratio, to reduced oxidant stress, to substantial improvements of both systolic and diastolic heart function and to marked amelioration of the impaired lung phenotype. Notably, the antioxidant tetrahydroneopterin which is not essential for eNOS function showed no relevant effect. Taken together these novel findings indicate that dysfunctional eNOS is of central importance in the genesis of the cardiopulmonary phenotype of cav-1(-/-). Additionally, these findings are generally of paramount importance since they underline the deleterious role of an uncoupled eNOS in cardiovascular pathology and they additionally suggest BH(4) as an effective cure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression