|  Help  |  About  |  Contact Us

Publication : Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.

First Author  Lu M Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  13 Pages  6082-7
PubMed ID  20231442 Mgi Jnum  J:158652
Mgi Id  MGI:4439399 Doi  10.1073/pnas.0902661107
Citation  Lu M, et al. (2010) Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct. Proc Natl Acad Sci U S A 107(13):6082-7
abstractText  The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K(+) channel. However, the expression of CFTR in apical cell membranes or its function as a Cl(-) channel in native renal epithelia has not been demonstrated. Here, we establish that CFTR forms protein kinase A (PKA)-activated Cl(-) channels in the apical membrane of principal cells from the cortical collecting duct obtained from mice. These Cl(-) channels were observed in cell-attached apical patches of principal cells after stimulation by forskolin/3-isobutyl-1-methylxanthine. Quiescent Cl(-) channels were present in patches excised from untreated tubules because they could be activated after exposure to Mg-ATP and the catalytic subunit of PKA. The single-channel conductance, kinetics, and anion selectivity of these Cl(-) channels were the same as those of recombinant mouse CFTR channels expressed in Xenopus laevis oocytes. The CFTR-specific closed-channel blocker CFTR(inh)-172 abolished apical Cl(-) channel activity in excised patches. Moreover, apical Cl(-) channel activity was completely absent in principal cells from transgenic mice expressing the DeltaF508 CFTR mutation but was present and unaltered in ROMK-null mice. We discuss the physiologic implications of open CFTR Cl(-) channels on salt handling by the collecting duct and on the functional CFTR-ROMK interactions in modulating the metabolic ATP-sensing of ROMK.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression